
Implementation of
Large-Scale Cloud-Based Systems

Author: Kamil Rafikov
Email: mailbox@kamil-rafik.com
WhatsApp: +996 755 439 777
Telegram: kamilrafikov
This document is distributed under CC BY-NC-ND 4.0 license.
Updated at January 3rd, 2026.
Edition: 10 (final fact-checking not yet performed).

Table of Contents
Introduction..2
Design and development process...2

Approaches and practices..2
Planning..2
Scrumban..3
TDD..3
Open source community style..4
Different practices..4
Critical documentation..4
Using AI for development..4

Hiring...6
Classifications of software developers...6
Filtering of candidates..6

Implementation of general functionality..7
Workflow...7
Limits...7
Technologies..7
Architecture...8
Storage...9
Analytics..10
Logging...10
Scheduled jobs...11
Access control...11
Financial functionality...11
Settings..11
Console commands..12
QA...12
Containerization..12
Deployment...12
Scaling and load balancing..13
Backup...13

Handling large-scale mature projects...13

Page 1 of 18

mailto:mailbox@kamil-rafik.com
https://creativecommons.org/licenses/by-nc-nd/4.0/

Examples of system design..14
Tours booking system..14

Requirements..14
Particularities..15
Possible issues..15

Field worker AI assistant...15
Requirements..15
Particularities..16
Possible issues..16

Self-learning AI assistant...16
Requirements..16
Particularities..16
Possible issues..17

Aggregator of small scale sellers...17
Requirements..17
Particularities..17
Possible issues..17

Augmented reality recommendations system..18
Requirements..18
Particularities..18
Possible issues..18

Summary..18

Introduction
The only purpose of this document is to demonstrate for potential employers my knowledge of modern
software development and skills in designing and managing development of large scale software
systems.

All architectural designs presented further are just samples not related to projects implemented at my
previous jobs. That’s why they match relatively standard requirements only. No collection of business
analytics has been performed for writing the designs. You should not and cannot use this document as
for development of production stage software as for development of MVPs.

Design and development process

Approaches and practices

Planning
Depending on particular project the following documents may be need to be written on the planning
stage with different level of details: a) general functional and technical specifications, b) low-level
specifications of internal and external APIs, c) input/output formats of data for the largest functional
blocks, d) list of possible bottlenecks and technical/organizational issues, e) logical and physical data
storage schemas, f) mockups of UI and diagrams of UI workflow, g) general interaction/inheritance

Page 2 of 18

diagram of modules and components with only main relationships rendered, h) numeric limits for
different metrics of the system, i) development standards.

Also, the following may need to be considered: a) in some projects significant part of functionality may
be encapsulated in standartized micromodules that may be developed independently by multiple
low-skilled developers simultaneously (or even generated by AI); b) in addition to business-oriented
part of functionality the large project may need significant amount of internal custom tools to perform
utilitarian tasks (however, AI may simplify this part significantly too); c) active usage of design
patterns terminology may cause development of unnecessary functionality, and may be a sign hiding
lack of qualification in some developers; d) any change in UI/UX design in a completed part of the
project may require up to 10x changes in code (just an oversimplification but it is good to know); that's
why it is desired to stabilize UI/UX design as early as possible, or if such stabilization is impossible, it
is desired to stabilize at least the ways how the changes will be introduced in the future to allow
developers to automate these procedures.

Scrumban
Considering that requirements of managerial/financial team and possibilities of development/design
team may mismatch often, I would propose the following Scrumban approach for development of
complex projects having a target to develop new product for the market but not just support some
business processes.

a) On initial project development stage which may take up to 1 calendar year where complexity of
the system and connectivity between all its parts is not yet high for an experienced professional
(certainly if development is made from the scratch), all teams in the business may use Scrum.

b) But then paths diverge. Development/design team performs all main work further with use of
Kanban. Managerial/financial team chooses completed tasks which are well-tested on staging
servers already, and then with use of Scrum performs minor fixes and subsequent release (minor
fixes, additional testing, and release may be even performed by separate development/design
team).

If the goal is just to support existing business processes then Kanban may be completely enough for all
teams. If the whole structure of the project suggests low connectivity between micromodules and/or
microservices then Scrum may be continued to be used always instead of Scrumban.

Such approach may not meet modern enterprise project management standards, but for relatively small
organization with less than 50 workers where everyone knows everyone and projects are rather
complex, it may be good enough.

TDD
Test-driven development is acceptable approach if at least one of the following conditions are met: a)
there is rather high budget from the very beginning, b) managerial team has skills to control large team
of mid-level developers (10-30 persons or more), instead of hiring fewer number of highly qualified

Page 3 of 18

ones, c) mission-critical system is developed, d) project is in the mature development stage and all new
development supports well-established business processes.

Open source community style
Many years ago I have read that some gaming companies (e.g. Valve) apply open source community
development style to development of commercial products. All could change since those times, but this
approach may be reviewed as acceptable too in some situations.

Different practices
Some of the following may need to be made in large complex projects in different amount depending
on particular circumstances and stage of the project development.

• Defining new project-specific and product-specific metalanguage that consists of business
domain terms and terminology taken from used technologies.

• Expecting political and business games that sometimes have rather destructive flare.

• Blurring managerial and other roles between several persons in the team instead of strict
assignments.

• Balancing between detailed marketing researches and simple breakdowns of prioritized
tasks/features.

• Documenting as system level design, as code, as hardware environment and configurations.

• Code reviews, sometimes multi-step reviews.

• Fixing quality standards as on paper as with use of automation tools.

• Tracking interchangeability of developers by assigning them appropriate tasks from different
parts of the system.

• Paying much attention to design of the office if in-office development is performed.

Critical documentation
Only critical sections of documentation that are necessary in every project are highlighted here: a) local
installation instruction, b) release instruction, c) vaulted list of credentials to used external system and
internal administrator-level credentials in the system, d) main system requirements and metrics, e)
instruction for basic manual testing of primary system functionality, f) history of the most critical
emergencies and methods of their resolution, g) contacts of all key team members, h) standard
instruction for restoring the system after failure, i) locations of all system logs.

Using AI for development
By the autumn of 2025th year I have not used yet AI actively for development. However, at October of
2025th I performed an experiment with ChatGPT 5 Plus with asking it for assistance while developing

Page 4 of 18

an application with several tens classes on a technological stack that I’m not completely proficient in.
Here are the approximate results from the point of view of experienced backend developer:

a) it gives very good responses on questions concerning usage and correct implementation of
software design patterns; however, my opinion may be biased by the fact that in the most part of
my previous projects the attention to correctness and active usage of design patterns was
limited; so, upon 3-6 months of active development with extensive usage of all kinds of
software design patterns, no necessity in AI for this purpose may be present;

b) it generates good draft versions of frontend components; obviously, they cannot be used as is,
but they minimize work with documentation for a case if frontend stack is not well known (as it
is in my case); I may use these draft versions as a general guidance and write final versions of
components more quickly;

c) it provides good review of large modules consisting of several tens components (I uploaded one
module in zipped format into the system); 10%-30% of review recommendations were
reasonable and needed to be really applied;

d) for a case when I needed to configure from the scratch some complex “out of the box”
functionality requiring configuration in about 10 places in .env file and code, it gives about 50%
of correct answers; so, it is rather helpful too.

One co-worker told me that using AI in agent mode would give much more impressive results.
However, I work primarily with old proprietary projects with not so good codebase and architecture,
where some solutions may be non-trivial and require much attention. That’s why I would not want the
AI to interrupt my work and flow of thoughts so deeply. It may bring more harm than benefit in such
situation (maybe not immediately but in long-term perspective).

Summary:

• I will definitely use AI as “smart search engine” to resolve some non-trivial architectural and
technical issues or to recover in memory formal theoretical definitions for naming parts of code;

• I will definitely use AI as “draft code generator” for a case of working with weakly known or
completely new stacks of technogies;

• and I will definitely use AI as “reviewer” before passing results of my work to human review.

All this should improve my performance and quality of work for 10%-25%, as I suppose.

However, I do not expect yet to use AI as “equal” developer-assistant during the next 1-3 years at least.

Page 5 of 18

Hiring

Classifications of software developers
Classifications provided further are my own inventions, are based on my practical experience, and do
not correspond to market buzzwords that may be met online. It may be impossible to classify hired
person clearly if this person has experience of working in the business for more than 10 years. So, the
provided classifications should be used as a general guidance, no more.

Classification by style of thinking:

a) “analysts” − usually having corporate or research/academic background (obviously, if they are
older than 30), usually having more “employee psychology” than “entrepreneur psychology”,
more reliable and useful on long-term large projects;

b) “creators” − having very “fashionable” skillset sometimes, preferring to operate as
subcontractors but not as employees, having good portfolio often, may be much better in
writing code than other types of developers;

c) “engineers” − having background in DevOps, system administration, and industrial engineering,
having experience in low-level software development sometimes, having experience in working
in complex mission-critical projects sometimes, having “exotic” or somewhat outdated skillset
sometimes.

Classification by project size/length that can be handled:

a) “sprinters” − these people can work on single project for no more than several months
(obviously, they concentrate on simple projects primarily and may be moved out of the job
market by AI relatively soon);

b) “stayers” − these people can work on single project up to several years (either full-time or part-
time);

c) “permanent workers” − these people can work on single project for many years full-time.

It is easy to guess that “permanent workers” prefer to work in well-established businesses. So, startup
or studio business should practically rely on the first two types of developers, and expect full rotation
of the team even once per year sometimes (which is definitely not pleasant and requires special
attention to the project knowledge base).

Filtering of candidates
The provided approach may be considered as the most reasonable one basing on my practical
experience.

a) Check quality of CV writing (just as a basic test of ability to express thoughts clearly).

Page 6 of 18

b) Check that CV contains something from the following list: educational awards, degree in
Computer Science (degreees in Physics, Mathematics, Life Sciences, Engineering are
acceptable too), knowledge of several foreign languages, participation in open source projects
(projects must be reviewed if present), online commercial portfolio (must be reviewed too if
present).

c) Check that CV contains all necessary technologies used in the projects or their analogs.

d) Talk with candidate and ask about numeric metrics/limits of the developed projects.

e) Technical interview may be not necessary, but if it is preferred to organize a lot of meetings to
discuss ongoing tasks then such interview may be desired to understand communicative skills.

f) Ask the candidate to perform code analysis test task with sending to the candidate a file with
several hundreds lines of “dirty” code.

If developers of type “engineer” described above are hired then formal educational degree, good
references, background check, and technical interview are obligatory.

Implementation of general functionality

Workflow
The following specifications are written with assumption that development will be performed in
multiple stages by small distributed team working for strictly limited budget.

Limits
It is supposed that projects written with use of the provided specifications will be scaled to maximum
possible audience globally, and must support extremely large data flows from millions of users with
minimal latency.

Technologies
Choice of technologies is dictated by widespread usage and broad range of fields they may be applied
to.

• Either PHP or Python (or both) may be used as the primary tools to build backend part of every
project. Laravel is preferred as PHP framework, and Django is preferred as Python framework.
(Node.js and Go may be used too for some performance sensitive tasks.)

• General purpose data management may be handled by MySQL, PostgreSQL, Redis,
ClickHouse, and object storage for files.

• Specialized data management may be handled by TimescaleDB (for timeseries data), PostGIS
(for spatial data), Pgvector (for vector data), AGE (for graph data), Elasticsearch etc. Choice is

Page 7 of 18

based on relation of the most part of the mentioned tools to PostgreSQL to avoid zoo of
technologies. Obviously, more specialized tools may be used too.

• Events management may be handled by Kafka or RabbitMQ.

• Opentelemetry is recommended to be used for collecting technical data on system behavior, and
in some cases as lower level of data collection for business analytics.

• React, React Native, and TypeScript are the preferred choices for building browser-running and
mobile-running frontends. (I’m not specialized in frontend development, so I could miss some
modern trends in this field, and consultation with frontend developer is necessary.)

• Docker may be used for containerization for local development. However, its well-known
security issues may require to search another containerization solution for production-stage
deployment (certainly, if you have not DevOps specialized on resolving such issues).

• Kubernetes may be used for handling deployment.

• In addition to standard standalone web-servers (e.g. Nginx), some web-server technologies
deeply integrated into the backend language infrastructure may be used for maximum
performance (e.g. Swoole). Also, in a cloud environment it is possible to migrate some
functionality to a serverless architecture.

• Choice of CI/CD tools depends on used repository service (e.g GitHub Actions, GitLab CI).

• CDN may be used to improve usability if the geographically distributed auduence is targeted.

Architecture
Development of backend software may be performed in several steps (if your budget is very limited):

a) monolithic application with low connectivity between modules; each module operates with
subset of data models in storages and does not access data models of other modules directly;
each module provides service class with API for being accessed by other modules; common
model classes will not be implemented; at this step all software may be hosted on single server
without much necessity of cloud infrastructure;

b) at the next step modules are extracted from monolithic application and encapsulated into
separate microservices; at this step complete migration to cloud is necessary;

• in the beginning, for simplicity, the “knowledge” of API of every service may be encapsulated
into common connections library which is hosted in separate repository and included as
dependency into every microservice; interaction between services will be performed
synchrounously as with REST APIs as in procedural style with use of appropriate libraries;

• optionally, API gateway service may be implemented to handle all interaction between
microservices and provide for developers and DevOps central monitoring point of all
interactions in the system;

Page 8 of 18

• optionally, in case if interaction between modules/microservices is not unidirectional and
supposes high latencies, a common event bus may be implemented where every
module/microservice will put and collect events with data for processing; in such case
separate monitoring module may need to be developed for administrator area of the system to
track state of the bus and results of operations; results of operations also may be implemented
in the format of events, and modules/microservices should handle them independently and
asynchronously;

• optionally, in case of large number of microservices and different versions of microservices,
some standard service discovery tool (e.g. Consul) may be used instead of storing settings in
configuration files;

c) as on step A as on step B particular pieces of code which represent minor overcomplex parts of
functionality and/or updated much more often than main code of microservices may be
extracted into FaaS infrastructure (e.g. AWS Lambda).

Requests to external services and providing resources to external services should be implemented in
asynchrounous style to parallelize execution.

Only the main approaches to interaction between microservices are listed in the step B, all others look
like too exotic and unnecessary for the most part of projects.

Obviously, depending on business tasks you may go in opposite direction: to start from development of
separate microservices, and unite them into the single system at later stages of the project.

Storage
From the very beginning of the project each domain area of the system may be given separate database
or set of databases. Standard domain areas requiring separate databases may be specified as the
following: analytics, logging, descriptions of objects in object storage, access control, finances, general
business logic, customer-oriented business logic, provider-oriented business logic.

If project is targeted at the audience with uneven geographic distribution then partitioning/sharding of
data by geographic criteria may be necessary. If project provides data that are accessed unevenly
depending on datetime markers then datetime-based partitioning may be applied.

Data of every logical entity belonging to different types (number, text etc) and having different
read/write scenarios may be distributed across different physical tables for maximum optimization.

Extremely frequently accessed data may be placed in key-value in-memory storages.

Replication should be used to keep availability of databases for emergency cases.

All stored customer-related data (including data in logs) should be easily identified via unique GDPR
marker (which may be just internal customer ID) related to customer account to have ability to find and
erase them from the system completely, including all caches.

Page 9 of 18

All externally available data identifiers should be non-sequential for security reasons.

Analytics
Collection of analytics in all projects may need to be performed for several purposes: a) technical
monitoring data that are necessary to debug software; b) business intelligence data that are necessary to
analyze usage of the system and make business decisions; c) reporting for end-users who use the
system for providing their services. Analytics logic for every purpose may be encapsulated into
separate module, and finally, keep data of every module in separate set of databases. However, all
modules may use common set of libraries and common approach to break development by stages.

a) Initially all analytics may be implemented through usage of external software for text logs
analysis and periodical generation of summary report tables in scheduled jobs.

b) At the next stage generation of events may be implemented on all levels of the system,
combination of offline and online data analysis may be used.

c) Complexity of data structure of collected events may be raised gradually, and include the
following in the final version: type, timestamp, location in code, type and ID of performed
operation, operation data, all actors involved into operation, result of operation.

Security and GDPR must be considered at all steps of analytics development.

Logging
Logging may be implemented in different way on each stage of project development:

a) log all to files that are automatically rotated and zipped either by framework tools or by system
level tools;

b) output logged data into stream that is handled by centralized cloud infrastructure, so that all
logged data may be queried later through built-in cloud tools; optionally, for cost optimization,
output logged data into ClickHouse databases; also, for cost optimization, different
storage/rotation rules may be applied to different levels/types of log messages (obviously,
amount of informational messages will be overwhelming, but for financial modules even they
must be stored for lengthy standard-specified periods of time);

c) implement structured business oriented logging where logged messages are represented by
complex data structures and may be interconnected within single business transaction/operation
(so, for example, multiple complex messages logged from multiple classes/methods may be
analyzed as single data unit); partially, it intersects with tasks of analytics modules,
implementation depends on how development/business processes are built and distributed
across organization.

Security and GDPR must be considered at all steps of logging development.

Page 10 of 18

Scheduled jobs
Each module will have its own set of scheduled jobs. On initial stage scheduled jobs will be
implemented with use of frameworks’ built-in functionality. Later, migration to Kubernetes CronJobs
may be performed upon necessity. Critical jobs must be marked in code appropriately with providing
results of execution to monitoring module in administrative area of the system.

Access control
Access control to different system machines and services should be based on private/public pair of key
unique for every developer. Revocation of the access should be made by DevOps with a single click
that deletes this key from access control service. Moreover, all such access should be made possible
within corporate VPN only. It is complete responsibility of DevOps to configure this part of the system
and to document it appropriately.

Access control for administrative area and service providers area of the systems may be implemented
as a combination of two-factor authentication with use of authenticator app on smartphone, one-time
passwords for initial login, and automated password recovery workflow for critical curcumstances.
External or custom service for risk-based authentication may be used.

Access control for customers may be implemented as a separate module that allows login with multiple
standard external identification providers (like mass email services, popular messengers, and phones).
Implementing custom password management functionality is not recommended, one-time login codes
sent to external identification providers are enough.

Security keys stored in databases should be rotated automatically every N days depending on account
type. Failed logins should be audited.

On initial stage RBAC may be completely enough to satisfy business requiremets. Later, migration to
ABAC may need to be performed.

Financial functionality
Financial part of system functionality should meet the following requirements: a) separate logging
storage, b) structured logging that keeps data for every step in multi-step operation, c) ability to
rollback multistep operation and mass operations at once (either via custom command-line tool or in
UI), d) notifications for administrators on non-standard situations.

All this is necessary to avoid negative end-user experience and conflicts with managerial/financial
teams due to inevitable technical issues.

Settings
Settings management can be developed with several iterations: a) initially all is configured in .env file
and Docker configuration files, b) later, settings may be moved into cloud infrastructure and/or

Page 11 of 18

Kubernetes, c) upon raising complexity of the system, implementation of feature flags service may be
necessary.

Console commands
Every console commands modifying data should use a) standard option to be executed in dry mode, b)
standard location for output log that is written on every execution (this log may be kept for N days), c)
transactional approach with automated rollback on failure. It is desired to develop template of such
command from the very beginning of the project.

QA
In case if highly qualified development team is hired and the project is not mission-critical then only
smoke tests and unit tests for the most important parts of functionality (20% − 50% of the system) may
be necessary. In microservice environment, contract testing (including versioning) may be also
necessary. Full scale testing is needed upon reaching some maturity by the projects only.

Containerization
If Docker is used for containerization then every separate application/service in the system should be
configured with several Docker Compose configuration overrides for development, staging, and
production environments. Configurations should override each other with maximum reusability.
Separate shell scripts should be written to build, start, and stop containers with simple commands.
(Such approach may be outdated for enterprise environment, and all this should be managed
completely by Kubernetes tools. However, on initial stages of project development, before integration
with Kubernetes, it may be completely enough.)

To minimize amount of debugging on production servers all Docker configuration for multi-service
system should allow all services to be started in development environment and be connected to IDE
debugger. Such configuration may require common IDE project configuration that may be downloaded
from separate repository and imported locally by every developer in the team.

You should note that Docker has multiple security issues and for mission-critical projects you should
consider other alternatives (that may be compatible with Docker and Docker Compose on configuration
files formats level).

Deployment
Even after completion of automation of deployment with Kubernetes the main developers of the project
should be able to login directly into the databases and run console commands in production
environment manually. (Yes, it creates high security risks, but may allow to resolve critical issues
quickly.) Logging functionality and local debugging configuration should be fully completed before

Page 12 of 18

migration to Kubernetes to minimize such intrusion into production environment for debugging and
hotfixing.

Scaling and load balancing
On initial stage of project development you may use Docker Compose for scaling the system with
running any number of microservice instances. Load balancing between instances may be implemented
either with use of Nginx as reverse proxy or with use of API gateway tools.

Later, migration to native cloud tools may be performed.

Backup
Backup may be made in according to the following principles:

a) all databases may need daily backup for the latest N (7-30) days; these backups may be rotated
with deletion of those that are older than N days; backup should be made into storage that
allows immediate restore;

b) every N days long-term (up to M years) backup of all databases may be made into low-cost
storage that does not allow immediate restore;

c) object storages may have less strict backup requirements, but it is project-specific;

d) financial logs and logs from manually executed commands may be backed up immediately to
low-cost storage that does not allow immediate restore for number of years specified in
standards.

All backups must be obligatory verified for integrity, sensitive backups must be encrypted.

Handling large-scale mature projects
In this section I would like to highlight some aspects that may be important if you are performing
enhancements of someone’s large-scale mature project, or if your own project has grown up already. By
“large-scale” and “mature” I mean the project with the large technical debt, built on the zoo of
technologies, and consisting of several hundreds microservices, frontends, mobile apps, data storages
etc.

a) Migrate as much as possible to asynchronous communication between system components.
Minimize synchronous operations to critical tasks only and limit them with one level call.

b) Minimize hard writes to data storages as much as possible, keep it for critical operations only.

c) Separate reading and writing to allow independent optimization and scaling.

d) Use materialized views for reading complex sets of data.

e) Apply real-time OLAP systems to your data infrastructure.

Page 13 of 18

f) If your data sources/storages are very diverse applying data lake level above all of them may be
beneficial.

g) Apply service mesh layer to all your microservices.

h) Improve communication between microservices with such approaches as avoiding repeated
calls to failed microservices, implementing specialized algorithms for repeated calls, isolating
failed parts of the system from others to avoid total collapse.

i) Implement zero-trust networking policy.

j) Migrate secure operations into trusted execution environments.

k) Apply automated terraforming approach to all your cloud environments.

l) Consider using automated compliance check if such compliance is necessary in the system.

m) Standartize tracing of all operations in the system.

n) In addition to standard test coverage, you may apply predictive QA trained on logs data and
artificial simulation of failures.

o) Migrate to trunk-based development approach for building features that should be delivered
immediately.

p) Implement progressive delivery with feature flags to minimize influence of new releases on
working parts of the system.

q) Implement not only single local development environment in Docker but multiple ones for
different versions of the system.

Examples of system design
Basic examples of system design are provided just to highlight deeper my approach to implementation
of modern applications. Breakdown into modules and entities is not performed because it is usually
extremely simple, only general analysis of each case is given.

Tours booking system

Requirements
• Providers of tours enter into the system information about tours, including locations, events,

variable options, costs, and amount of available tickets.

• Customers browse tours, compile desired set of locations, events, options, tickets and perform
purchase.

• The system charges commission from all sales.

Page 14 of 18

Particularities
Number of providers is relatively small and can be handled easily. Information about provided tours is
relatively static. Only variable options, dates, and amount of available tickets are changed regularly.

For low-cost tours the system reserves all charged costs in payment gateway until getting confirmation
of performed tour services from provider. Final charges and payouts are performed only after that.

Idempotency keys may be necessary for multiple operations.

Integrations with payment gateway service, geolocation service, maps service are necessary. External
or custom fraud detection system may be necessary.

Real-time notification exchange module between providers, customers, and administrators is necessary.

Financial compliance standards must be met.

Possible issues
During the process of compiling a tour the system should continuously provide feedback to customer
about availability of tickets in chosen tour component to avoid spending customer’s time for selecting
components with all sold tickets already. Real-time notifications with WebSockets may be used for this
purpose.

At the moment of putting compiled tour into the cart the limited number of tickets in every tour
component must be recalculated and locked, so there will be races between customers. Key-value
in-memory storages (e.g. Redis) may be used for this purpose.

However, as in all similar systems minor overbooking may be allowed which will be later resolved
with technical support and providers.

Seasonal peaks may increase system load by multiple times in comparison with standard load.
Preliminary load testing is obligatory for such situation. Automated scaling and load balancing with
standard cloud tools is necessary.

Field worker AI assistant

Requirements
• Field workers service complex technological objects with using attached head cameras and

microphones.

• Videostreams from cameras (including audio track) are sent to the system for AI analysis.

• Upon completion of real time analysis recommendations from AI in audio format are sent to
field workers and played while they perform their service work.

Page 15 of 18

Particularities
Significant amount of model training may be necessary before system will be used in production mode.
Up to several tens thousand cases.

Final output from the system should never come to field workers directly to avoid disturbing them and
desinforming them. Separate person qualified for interpreting AI recommendations should observe
situation from outside, receive recommendations, and retell them to field workers, if necessary.

Government security compliance standards must be met.

Possible issues
The most resource consuming part of the system is real-time analysis of videostreams to parse them
into text, generate recommendation, and convert recommendations into audio format. However, if it
will be done in external AI system then no performance issues should arise. OpenAI and Llama provide
such functionality already.

Also, large object storage must be used to keep all videodata obtained from field workers. Strict rules
for backup should be implemented considering nature of collected videodata.

Technology is very fresh by 2025th year, so results in quality and latency are difficult to predict. The
whole project may be classified as experimental one, may go out of the budget easily, and completion
may be postponed up to several years. If custom model will be trained instead of using external
services then project becomes even more experimental.

In practice, it is recommended to contact sales managers of companies providing video analysis models
and obtain from them realistic estimates of quality of results. Also, considering nature of the project
and amount of data for training it may be possible to obtain significant discounts from sales managers.

Self-learning AI assistant

Requirements
• Customer provides for the system planned reading lists and updates on progress.

• The system analyzes customer’s data, discusses with the customer the ideas taken from read
material, interviews the customer to check whether materials have been absorbed fully, and
provides for the customer recommendations on subsequent reading and purchasing
goods/services.

Particularities
Significant amount of model training may be needed with several thousands categories of literature and
similar amount of combination of purposes of self-learning. However, upon completion of training the
model with test users, it will be possible to build several hundreds “portraits” of customers that further
may be used to simplify/speed up communication and recommendations.

Page 16 of 18

Catalog categories should support as tree-like structures as tagging.

Integration with reading list services and ebook provider platforms are desired.

Integration with external advertising management system is necessary to obtain contextual
recommendations.

Possible issues
No bottlenecks or other issues are expected in the system.

Aggregator of small scale sellers

Requirements
• Small scale sellers register in the system and place there information on sold products.

• Customers perform search of sold products by multiple criteria and purchase products.

• System charges commission from sales.

Particularities
Catalog categories should support as tree-like structures as tagging.

System reserves charged amounts in payment gateway and performs final payout only upon getting
information on completed delivery.

Search engine should be used to simplify search by multiple criteria (e.g. Elasticsearch).

Rating/review module for seller may be necessary.

Idempotency keys may be necessary for multiple operations.

Integrations with payment gateway service, geolocation service, maps service are necessary. External
or custom fraud detection system may be necessary.

Real-time notification exchange module between sellers, customers, and administrators is necessary.

Financial compliance standards must be met.

Possible issues
Races between customers for remaining amounts of products may be possible. However, overselling is
acceptable because delivery is not immediate and sellers may produce/obtain necessary products within
reasonable amount of time. Also, order may be cancelled in communication with technical support and
seller upon completion. So, no performance issues are present.

Page 17 of 18

Augmented reality recommendations system

Requirements
• Providers place information on locations, services, and events into the system.

• The system builds customers’ profiles upon registration and upon analysis of changes of
customer’s locations. Basing on these profiles the recommendations are generated.

• Customers moving through the area obtain aforementioned recommendations in real time.
Information is displayed via augmented reality device. Recommendations may include paid
advertisements.

Particularities
Number of providers is relatively small and information on locations, services, and events is relatively
static. So, all these data may be handled very easily.

In opposite, number of customers may be very high and amount of geolocations data obtained from
customers may be extremely large.

Preliminary breakdown of serviced territory into blocks of several tens meters width/length, matching
all providers’ data to these blocks, and predicting visited blocks by analyzing previous customers’
behavior may be necessary for maximum optimization.

Locations categories should support as tree-like structures as tagging.

Integrations with geolocation service, maps service, external advertisement service are necessary.

Specialized low-latency spatial data management system may be necessary.

Possible issues
Real-time rebuilding of customer profiles and real-time update of recommendations may be the largest
bottleneck. However, high load will be on initial stage of collecting data only which can be done with
several thousands test users receiving fee for participation. Upon analysis of the collected test data it
will be possible to build several hundreds typical “portraits” of customers, and later perform gradual
matching of new customers to these “portraits”. So, every customer will immediately receive large
amount of relatively appropriate recommendations that will be later polished only. Obviously, amount
of “portraits” may be extended later.

Summary
I hope this document demonstrates my capability to lead complex large-scale cloud-based projects
during the whole lifecycle, I hope you enjoyed reading, and I expect long-term productive work with
you. Thank you for spending your time!

Page 18 of 18

	Introduction
	Design and development process
	Approaches and practices
	Planning
	Scrumban
	TDD
	Open source community style
	Different practices
	Critical documentation
	Using AI for development

	Hiring
	Classifications of software developers
	Filtering of candidates

	Implementation of general functionality
	Workflow
	Limits
	Technologies
	Architecture
	Storage
	Analytics
	Logging
	Scheduled jobs
	Access control
	Financial functionality
	Settings
	Console commands
	QA
	Containerization
	Deployment
	Scaling and load balancing
	Backup

	Handling large-scale mature projects
	Examples of system design
	Tours booking system
	Requirements
	Particularities
	Possible issues

	Field worker AI assistant
	Requirements
	Particularities
	Possible issues

	Self-learning AI assistant
	Requirements
	Particularities
	Possible issues

	Aggregator of small scale sellers
	Requirements
	Particularities
	Possible issues

	Augmented reality recommendations system
	Requirements
	Particularities
	Possible issues

	Summary

