Implementation of Blockchain-based Systems

Author: Kamil Rafikov

Email: mailbox@kamil-rafik.com

WhatsApp: +996 755 439 777

Telegram: kamilrafikov

This document is distributed under CC BY-NC-ND 4.0 license.
Updated at Novermber 8", 2025.

Edition: 3 (final fact-checking not yet performed).

Table of Contents

IITOAUCTION. ...ttt ettt sttt e s b a e b e s b e e be et st e eeneneeneeneens 1
When you really don’t need bloCKChain?..........coociiiiiiiiiiiiiiecececce e sar e s 1
DESIGI APPIOACKHES.c.ueiiiiiieiietteteet ettt ettt ettt e e sttt e e s bt et sate s bt et e et e s nb e e sabe e sabeeenbeeebeeas 2
DISASTET SCEIMATIOS. ...ceiueteriurieiitieeitte ettt ettt ettt e ettt e et e e et e e eabeeeeab e e s st e e s bbeesbaeesabbeesbeeeeasaeeeaseesenstesansaeeeeas 2
Possible issues upon introduction of bloCKChaiN.c.cocueriiiiiriiiriiirieceeee e 3
Implementation of high-performance blockchains............coccoveeviiniininiinieeee e 3
Legitimate tokens vs so-called “Shit-COINS”.......c.cooiriiririiiriirieeeee ettt s 4
TOOIS aNd tECHNOLOZIES.ccoviiieiieieiieeteeee ettt s e s s te e s s be e s s ateesssbeessbeessaeessseesssnssaeeeens 4
Other options to implement distributed data storages and ledgers............cocceeervvereenenseerneenseenseenniennne 6
Mathematical fOUNAAtIONS.......cc.ciiuiriiiriiieeeteee ettt sttt et e e saeeseeeaee s 6
TOITIINOLOZYe ittt et ettt e s e e b e e st e e beesabessbe e s st e e sbeensaesabeenstesnsaaesnsaaennsnaeas 8
SUITIIMIATY ..ttt e e ettt e s et e e e sttt e e e s s sbeeeesaasbaeeesasbaeessassbaeesssssaeessnssssssssaaaaaaaeeenns 8
Introduction

This document is written to demonstrate my theoretical knowledge of the topic of implementation of
blockchain-based systems. It is not related anyhow to the projects performed by me at previous jobs.
That’s why you should not and cannot use the information provided further as for development of MVP
as for development of production stage projects. However, I suppose it may be helpful for you when
you will plan introduction of blockchain into your organizational and/or business processes.

When you really don’t need blockchain?

You definitely don’t need blockchain if data that you expect to place into it match all the following
criteria: a) they should be accessed by very limited number of users, b) they may be or must be able to
be changed completely and regularly, c) they need to be accessed in large amounts in real-time.
Traditional database management systems allow to reach all these goals with much less issues.

Page 1 0of 8

mailto:mailbox@kamil-rafik.com
https://creativecommons.org/licenses/by-nc-nd/4.0/

Design approaches

Permissions management options: a) public permissionless; b) private permissioned (as in single
organization as in consortium of organizations); c) hybrid (private chain processing, public chain
anchoring).

Consensus management options: a) proof-of-work; b) proof-of-stake; c) delegated proof-of-stake; d)
Byzantine Fault Tolerant consensus; e) proof-of-authority; f) hybrid.

Architecture options: a) monolithic; b) modular; c) secondary blockchain built on top of another one;
d) separate blockchain built as a sidechain connecting via bridges to another one; e) sharded.

Cryptocurrency ownership management options: a) by transactions outputs; b) by account balances.

Private data management options: a) using zero-knowledge proofs to hide interactions between users
(with optional keys for legal agencies to track interactions); b) keeping only hashes of data on chain,
the data are stored and managed in external storage; c) keeping data on chain in encrypted form only,
keys are stored and managed in external storage; d) using “chameleon” hash functions that allow
authorized edits of chain data with keeping blocks valid; e) using protocol with consensus-level rules
allowing authorized edits.

Complexity options of code executed on chain: a) basic scripts; b) smart contracts; c) specialized
application-specific modules.

Oracles usage options: a) by direction of data flow; b) by centralization level; c) by data security
level; d) by connectivity level between oracles and blockchain.

Disaster scenarios

Further the most common and the most critical disaster scenarios are provided that should be
considered upon production deployment of blockchain.

* 51% attack.
* Disagreement between nodes causing permanent split of blockchain.

* Communication issues: a) failure of consensus because of unavailability or significant
desynchronization of validating/mining nodes; b) degrading interaction between nodes in
network by introducing multiple fake nodes; c) DDoS attack; d) hanging chain reorganization
due to multiple invalid blocks; e) mass exit of validators due to technical or organizational
issues.

* Internal logic issues: a) issues in smart contract logic; b) state inconsistency issues; c) consensus
algorithm issues halting production of new blocks; d) incorrect pruning issues; e) cryptographic
issues causing exposure of private data.

Page 2 of 8

* Governance issues: a) theft of keys used to operate blockchain; b) accidental undesired
concentration of voting power within small group of legally related nodes.

* Hacking blockchain logic through external data provided a) via oracles, b) via interchain
communication protocols.

Possible issues upon introduction of blockchain

The most important issues caused by introduction of blockchain into business processes may include
the following:

a) underresearched legal and governmental limitations or underestimated long-existing business
practices that prevent beneficial usage of blockchain;

b) algorithmic and mathematical errors in used libraries/frameworks which may make blockchain
non-functional;

c) accidental or malicious placement of private and/or incorrect data into blockchain where they
may be immutable;

d) if technical data (like IoT or video surveillance output) will be collected in blockchain its size
may grow up to unmanageable one; in countries with insufficient Internet infrastructure even
expected blockchain size may cause issues for end-users in remote areas.

Implementation of high-performance blockchains

Custom blockchain that targets the goal of maximum performance should meet the following guideline
approximately (only the most important principles are listed):

* use proof-of-stake, delegated proof-of-stake, or BFT consensus;

* use parallelized blocks proposal, validation, and smart contracts execution;
* minimize number of validators with randomizing them for security;

» prefer Wasm over byte-code for smart contracts;

* maximize periodic pruning and caching;

» prefer off-chain execution of logic and off-chain storages with keeping only results of
operations and hashes on-chain;

* implement parallel sidechains depending on business purpose;
* optimize interaction between nodes with some reasonable minimal amount;

¢ batch small transactions.

Page 3 of 8

Legitimate tokens vs so-called “shit-coins”

Speaking correctly, so-called “shit-coins” are not really coins, they are tokens living on some another
blockchain, and they have no built-in value, all their value is based on advertisement and speculations.
Acceptance of these tokens in exchange for something valuable is based on acceptors’ trust solely.

Typical “shit-coin” may be created with the simplest code of several tens lines in smart contract, or
even with running built-in command in some infrastructure. There is no legal framework in such
blockchains as Ethereum describing and limiting the procedures of creating and managing “shit-coins”.
However, state laws may impose very strict limits on all such ativities.

Usually, all possible offer of such coins is created on initial deployment only; if more coins may be
issued later it either should cost reasonable amount of some resources or may be considered as a scam.

If you expect to build legitimate tokens but not “shit-coins”, then you should follow appoximately the
guideline provided further:

* base on legitimate blockchain and standardized code for creating tokens to eliminate security
risks (e.g. Ethereum, OpenZeppelin ERC-20);

* publish standard events on funds movement between accounts to allow tracking;
* use multiple keys and timelocks for administrator-level operations;

* publish initial offerings to third-party services that will control that no hidden offerings will
happen later;

* pass official audits;
* provide maximum legal and technical information on your token online.

Obviously, if you are just a user but not an issuer then checking match to all these guidelines may help
you to see difference between market-offered “shit-coins” and legitimate tokens. Also, you may check
whether ownership of tokens is highly concentrated or not.

Tools and technologies

Choice of reviewed tools and technologies has been made basing on widespread usage and maximum
coverage of fields of application.

FRAMEWORKS FOR BUILDING CUSTOM BLOCKCHAINS

TOOL MAIN LANGUAGES NOTES

Cosmos SDK Go For development of completely independent
smart contracts: chains.
Rust/Wasm,
Solidity (not on core SDK)

Page 4 of 8

Polkadot SDK Rust

smart contracts:
Rust/Wasm,

Solidity (not on core SDK)

For development of multiple interconnected
chains. It has more deep historical connection
with Ethereum, but such connection does not
mean better interoperability.

Hyperledger Fabric |Go, Node.js, Java

For development of enterprise-level
permissioned chains.

Hyperledger Besu |Java
smart contracts:

For development of enterprise-level
permissioned Ethereum chains.

Solidity
Avalanche Go For development of high-performance chains
smart contracts: compatible with Ethereum.
Solidity
PLATFORMS FOR BUILDING BLOCKCHAIN-BASED APPS
TOOL MAIN LANGUAGES NOTES
Flow Go (to customize private node); |For development of consumer-facing
smart contracts: Cadence chain-based apps (e.g. gaming, finance).
Solana smart contracts: Rust, C/C++ For development of high-performance

chain-based apps.

PLATFORMS TO HOST BLOCKCHAINS

TOOL

NOTES

AWS Managed Blockchain

Support for Hyperledger Fabric, Bitcoin, and
Ethereum.

Chainstack For minimizing complexity in managing
nodes, supports 70+ blockchain protocols.

Kaleido For hosting enterprise-level chains.

SettleMint For hosting enterprise-level chains. Targeted at

simplification of integration of blockchain into
business processes.

ETHEREUM-RELATED TOOLS

Hardhat Local development environment of smart
contracts.
Tenderly Debug tool and DevOps platform.

Geth, Erigon

Node-running software.

web3.js, ethers.js, wagmi, Web3.py

Libraries to interact with blockchain.

Etherscan

Blockchain explorer

OTHER USEFUL TOOLS

Slither, Mythril, Echidna, Snyk

Smart contracts security analysis tools.

Page 5 of 8

Infura, Alchemy, QuickNode, Ankr Presentation of blockchain access as cloud API
service without necessity to run own node.

The Graph, SubQuery, Substreams Indexing and querying frameworks.

Ceramic, DIDK:it, Lit Protocol Decentralized identities’ data management
tools.

Chainlink Oracle platform specialized on financial data

but may be techically applicable to much more
wide range of fields.

DIA Community-driven open data oracle network.

Wormhole, LayerZero, Axelar, Hyperlane, deBridge |Blockchain interoperability tools.

Blockscout Blockchain explorer.

Dune, Nansen, Footprint Analytics Online analytics platforms.

Other options to implement distributed data storages and
ledgers

All tools listed further are primarily backend tools targeted to support enterprise-level infrastructure.
Depending on your necessities you may find that some of them fit you much more than
blockchain-related technologies.

Distributed logs: Apache Kafka.

Distributed SQL databases: CockroachDB, YugabyteDB.

Distributed NoSQL databases: Apache Cassandra, Amazon DynamoDB, MongoDB.
Ledger databases: Amazon QLDB.

The following tools may be considered as alternative for blockchain if you target servicing IoT devices
or just extremely large amount of transactions.

Directed acyclic graph tools: IOTA, Nano, Hedera, Constellation, Obyte.

Mathematical foundations

Further I’'m explaining some important mathematical foundations of blockchain-based and DAG-based
systems to clarify for you the details of their functionality.

FLP impossibility theory vs partial synchrony theory: these theories provide models of functioning
for asynchrounous systems that from one side explain that in some cases reaching consensus may be
absolutely impossible, and from another side provide basement to implement such systems in a way
that in real world allows guaranteed reaching of consensus at some point in time.

Page 6 of 8

Verifiable random function: cryptographic technique that allows owner of private key to produce
random unmanipulated output and holders of public key to verify that output was produced correctly;
this technique is used by sortition logic to choose validators, block producers etc in fair manner.

Metastable consensus: consensus technique that uses in reaching consensus between not all nodes in
the network but just a small randomized sample of nodes; it allows to reach maximum performance in
CONSensus process.

Polynomial commitment: cryptographic technique that allows one party to participate in computation
and provide at later stages of computation some proof of correct participation that may be verified by
another party without revealing original data of the first party; the approach is used in zero-knowledge
proof algorithms.

STARK: the main and the most modern class of protocols of zero-knowledge proof computations;
based on public randomness, does not require any secure setup.

Recursive proof: technique that allows to breakdown zero-knowledge proof computation into smaller
segments where proof of each segment is based on another one; allows to reach higher performance in
large computations.

Verkle trees: more performant and more secure version of Merkle trees (cryptographic struture the
blockchain is based on).

Erasure coding: data storage technique that distributes parts of large dataset across many nodes to
minimize amount of stored data and reliable recovery under failure conditions.

Markov Chain Monte Carlo tip selection: algorithm used in DAG-based systems to minimize
chances to approve malicious transactions.

EIP-1559-style dynamic fees: transaction-pricing mechanism implemented by Ethereum to calculate
fee basing on amound of data in previous block; provides more predictable and more user-friendly
approach to calculation of fees.

Linkable ring signature: cryptographic technique that allows to sign message anonymously within a
group and to verify ownership of signatures; used to minimize double spending and double voting.

Condidential transaction with bulletproof: cryptographic technique to create transactions with
hidden amounts but verifiable correctness of transaction.

Zero-knowledge accumulators: cryptographic technique that allows to prove inclusion of value in the
set without revealing the set itself.

Latency-bound and bandwidth-hard proof-of-work algorithms: algorithms targeted at
democratization of mining with use of general purpose hardware instead of specialized one.

Multiparty signature with treshold: cryptographic technique to allow group of signers to produce
single signature (for maximum efficiency, instead of storing multiple signatures) and do it even if some
signers are missing but minimal treshold is met.

Page 7 of 8

RSA accumulators with witnesses: cryptographic technique used to whitelist/blacklist sets of coins.

Terminology

I tried to use maximaly simple terminology above to explain multiple technical particularities, but
blockchain articles are filled with specific professional lexicon that was invented with a purpose to
expand blockchain into multiple fields of applications in the future. Here are some the most important
of terms related to legal and business worlds; you may find definitions of these terms and other terms
by yourself, I guess:

sovereign chain, parachain, sidechain, rollup;

Layer-0 (L0O), Layer-1 (L1), Layer-1.5 (L1.5), Layer-2 (L2), Layer-3 (L3);
oracle;

decentralized autonomous organization (DAO);

slashing economics;

transaction mixer.

Summary

I hope this document demonstrates my general knowledge of blockchain and generally DLT world, I
hope you enjoyed reading, and I expect long-term productive work with you.

Thank you for spending your time!

Page 8 of 8

	Introduction
	When you really don’t need blockchain?
	Design approaches
	Disaster scenarios
	Possible issues upon introduction of blockchain
	Implementation of high-performance blockchains
	Legitimate tokens vs so-called “shit-coins”
	Tools and technologies
	Other options to implement distributed data storages and ledgers
	Mathematical foundations
	Terminology
	Summary

